
1 | ANU College of Engineering and Computer Science	 October 2020

Distribution
Week 10 Laboratory for Systems, Networks and Concurrency

Uwe R. Zimmer

Pre-Laboratory Checklist

vv You have read this text before you come to your lab session.

vv You understand and can utilize message passing locally.

vv You have a firm understanding of memory based synchronization.

vv You understand and can apply implicit concurrency.

vv You can create and control tasks.

Objectives
This lab will introduce you to the world of distributed computing in practice. You will use BSD
socket based communication utilizing TCP/IP connections to combine all of your fellow stu-
dents’ computers into one logical ring.

Interlude:  Passing messages everywhere

As you have learnt in the lectures of this course (and in other courses) in a little while, network
protocols are usually designed in layers where each layer abstracts a certain aspect of mes-
sage passing. The lower layers are more concerned about abstracting the physical medium
(may it be copper cables in various configurations or glass fibre connections). Then there will
be an abstraction to a enable a single, fixed-size message to be routed to the correct node.
After that there will be synchronization over longer messages or message sequences from end
node to end node in a complex network. This lab will work in this specific abstraction level. In
the case of the internet, this will would be called TCP/IP or Transmission Control Protocol
over the Internet Protocol. While there are specific interfaces to TCP/IP directly, this is usually
to be avoided by anybody but the most brave (unless you write the software for a router) and
one mostly utilizes more abstracted interfaces – for instance the universally available BSD1
socket interfaces. BSD sockets can be used to send individual datagrams (messages without
end-to-end flow control/synchronization, which translate into UDP/IP in case of the internet or
User Datagram Protocol), or to connect end nodes in a way that they can exchange messages
in a continuous (“streaming”) way and with guarantees for their arrival (synchronization) (which
translates into TCP/IP).

Very similar to what you are used to from Ada messages, message passing via BSD sockets
assumes a server and a client side, while the server opens a port (Ada: entry) to the outside
which can then be utilized by any client who happens to know about this port.

1	B erkeley Software Distribution

2 | ANU College of Engineering and Computer Science	 October 2020

To save you some time, I abstracted over most of the finer details and provided an Ada pack-
age for you which contains only the essential steps to communicate with any other node on the
internet.

First we need to open a port to the network, such that other computer nodes can call us:

 function Open_Server_Port
 (Port : Port_Type;

 Server_Addr : Inet_Addr_Type := Addresses (Get_Host_By_Name (Host_Name)))

 return Socket_Type;

We only need to nominate a port which should be opened which is simply a number between 0
and 16#FFFF#. Not all of those port numbers will be freely available to you as some ports have
specific meanings. Port 0 is for instance used for internal communications local to your oper-
ating system, while for instance port 22 is the default port for your ssh connections2. Gener-
ally port numbers above 50,000 are not reserved by anybody and you can use them freely
for experimentation. The interface also accepts a local IP address which can come in handy
if your computer has multiple interfaces. If there is only one IP address associated with your
computer, then you can just rely on the default value which uses your computer’s first address3.
The return value is a reference to this port which you just opened so that you can refer to it
later within other operations. This first step relates to what you did frequently before when you
declared an entry as part of your task definitions.

The second step is to accept a call from the outside, and thus relates to your accept state-
ments from your previous exercises:

function Accept_Connection
 (Server_Socket : Socket_Type;

 Connection_Socket : out Socket_Type;
 Connection_Address : out Sock_Addr_Type) return Stream_Access;

You will use the reference which you gained from the previous function as the first parameter
here. This call is blocking until a client actually calls in. Once this happened, a channel to the
client is been established and you will gain three values in return: The main return value is a
reference to the channel on which you can now exchange information (more on this in a mo-
ment). The other two parameters are of lesser importance: Connection_Socket is for now only
needed so that you can close this channel once you had enough from this client and Connec-
tion_Address tells you from which network node and port this call originated – just in case this
is important (in the labs we will use it for debugging so that you know that this call came from
your friendly neighbour and not from the other side of the room/planet).

One last missing connection call: A client also needs to have a means to connect to an open
server. This is implemented via:

function Connect
 (Server_Addr : Inet_Addr_Type;

 Port : Port_Type;

 Connection_Socket : out Socket_Type) return Stream_Access;

The parameters are rather obvious now: We need to provide a network address and port on
which to call. In return we will also receive a reference to a communication channel and a Con-
nection_Socket which is again needed to close the channel once it won’t be needed any more.

By now, both, the server as well as the client possesses a reference to a communication
channel which is also bidirectional (i.e. both sides can read and write on this channel). If we
assigned this to a variable Channel, we can then transfer the value of a variable Message of the
type Message_Type by saying:

Message_Type’Write (Channel, Message);

2	 You can look up reserved numbers around the internet at: http://www.iana.org/
3	 Your computer’s second address would be: Addresses (Get_Host_By_Name (Host_Name), 2) etc.

http://www.iana.org/

3 | ANU College of Engineering and Computer Science	 October 2020

on one computer node and:

Message_Type’Read (Channel, Message);

on the connected computer node side.

Keep in mind that the communication systems which we use here has no idea about types.
This implies some good and some bad news: The good news is that this technique works
without any issues between any self-respecting programming languages. So exchanging mes-
sages between say Python and Ada is easy and none of the sides will ever notice that the other
side speaks a foreign language. Yet, there is also bad news when things are untyped: Nobody
checks the correctness of your types any more. So if one node thinks the current message
format is one thing, while the other node thinks it is something different, unbound chaos will
prevail. There are systems to amend those issues to a degree (usually called Middleware), but
they will also reduce your freedom in programming languages and types. For now you don’t
need to worry about this too much as all your nodes in this lab are programmed in the same
programming language which makes consistent typing easier. If you stick with one language
and one distribution system then you can guarantee type safety rather easily even if the pro-
cessor architectures on your computing nodes are different. In almost all other cases, there will
be some additional effort required.

So the complete story on the server side could like something like that:

declare
 Server_Socket : constant Socket_Type := Open_Server_Port (Port => 60043);

 Connection_Socket : Socket_Type;
 Connection_Address : Sock_Addr_Type;

 Channel : constant Stream_Access :=
 Accept_Connection (Server_Socket, Connection_Socket, Connection_Address);

 Message : Message_Type;

begin
 ...
 Message_Type’Read (Channel, Message);
 ...
 Message_Type’Write (Channel, Message);
 ...
 Close_Connection (Connection_Socket);
 Close_Server (Server_Socket);
end;

While a client could for instance look like this:

declare
 Connection_Socket : Socket_Type;

 Channel : constant Stream_Access :=
 Connect (Server_Addr => Inet_Addr (“192.168.115.11”),
 Port => 60043,
 Connection_Socket => Connection_Socket);

 Message : Message_Type := 42;

begin
 ...
 Message_Type’Write (Channel, Message);
 ...
 Message_Type’Read (Channel, Message);
 ...
 Close_Socket (Connection_Socket);
end;

But what happens if the same node is client with one channel and server with another? This
brings me to your lab exercise for this week …

4 | ANU College of Engineering and Computer Science	 October 2020

Exercise 1:  Find the ring leader

You arranged tasks in a ring before and passed messages along the ring. This time will arrange
all your lab computers into a ring and run a distributed election algorithm on it – in case there
would be a need for an arbiter or other form of central management. A classical algorithm for
this is has been suggested by Ernest Chang, Rosemary Roberts in 19794. We use it here in a
slightly simplified form:

a.	Find a unique id in each node. To make this interesting, we
use a random value followed by our local address.

b.	Each node sends its own id around the ring (as an election bid).

c.	If a node receives a bid which is larger than its own bid then it forwards
this bid to the next node (and can forget about being elected).

d.	If a node receives a bid which is smaller than its own bid then it drops this
message without a trace (and can still be hopeful of being elected).

e.	If a node receives its own bid then it knows that it is the new leader (and the node
can send a confirmation message around the ring to indicate who is boss).

You can download a framework which has this algorithm already implemented and also pro-
vides you with a command line interface to set the address and port of the next node in your
ring. Once you solved this exercise, you should team up with other students in your lab which
also have a solution and form a ring of connected computer nodes with them (and then run the
above distributed election algorithm).

Your job is to solve the following problem: In order to set up such a ring you need to complete
two blocking calls, namely Connect and Accept_Connection. Obviously, if all nodes block on
Connect first and Accept_Connection second, then the ring will never be established. The other
way round does not work either which you will agree with after a few seconds of reflection. So
it sounds like a classical concurrency/synchronization job which should find its perfect match
with you.

These two code blocks need to be embedded into your provided node code somehow:

Put_Line (“Waiting for previous node to connect”);

Incoming_Channel :=

 Accept_Connection

 (Server_Socket, Incoming_Connection_Socket, Incoming_Connection_Address);

Put_Line (“--> Previous node connected from: “

 & Image (Incoming_Connection_Address));

and:

Put_Line (“Waiting for next node to become available”);

Outgoing_Channel :=

 Connect (Server_Addr => CLP.Next_Addr,

 Port => CLP.Next_Port,

 Connection_Socket => Outgoing_Connection_Socket);

Put_Line (“--> Connected to next node at: “

 & Image (CLP.Next_Addr) & “:” & Port_Type’Image (CLP.Next_Port));

Make sure that both, Incoming_Channel as well as Outgoing_Channel have a valid value before
they are being used in subsequent read and write operations.

4	 in their short paper: An improved algorithm for decentralized ex-
trema-finding in circular configurations of processes; Communica-
tions of the ACM, Volume 22 Issue 5, Pages 281-283, May 1979

5 | ANU College of Engineering and Computer Science	 October 2020

Once your code works, you can use the command line options:

 [-a {IP address of this node : String }]
 [-n {IP address of next node : String }]
 [-p {This node’s port : Port_Type }]
 [-q {Next node’s port : Port_Type }]

to test your ring by starting just two nodes on your own computer first. For this you open two
terminals, navigate in both into the Executable directory of your current lab and type in one
terminal:

./ring_node -p 50041 -q 50042

and in the other terminal:

./ring_node -p 50042 -q 50041

If this works you will also have seen your own IP address5 (as part of the output of your own
program) which might have been for instance 192.168.115.11 and can hand this IP address to
your friendly neighbour, who can then type on his computer:

./ring_node -n 192.168.115.11

to connect to your computer. Accordingly you use your neighbour’s IP address on your com-
puter in the same way to form a two-node ring.

Now you get the hang of the idea and you can collect more IP addresses around the lab and
arrange for a larger and larger ring of lab computers.

Don’t forget to submit your competed, zipped project code to the SubmissionApp under “Lab
11 Ring node” for code review by your peers and us.

What form of message passing did you exercise in this lab? Was this synchronous or asynchro-
nous message passing? Is reading and/or writing to a channel potentially blocking? – and if
so: until when? You can conclude some of the answers from your working code. Research and
discuss the options for the remaining answers with your tutor and class mates.

Exercise 2:  Foreign languages

Program a ring node with follows the exact some protocol as the code which has been pro-
vided to you in your second favourite programming language. BSD Socket interfaces will be
available in all self-respecting languages, yet you need to make sure that you will conform to a
common message format. If your second favourite language is not flexible enough to produce
the current format, you can as well change the format on the Ada side. For that you might look
into the Interfaces.C packages.

Submit a zip archive of your code in any language to the SubmissionApp under “Lab 11 Ring
node foreign” for code review by us.

Make Sure You Logout
to Terminate Your Session!

Outlook
During the last few days before the second assignment deadline spend time to polish things
and make sure that your code and diagram is spot on.

5	 You can also find out your local IP address in general by typing: ip addr

http://cs.anu.edu.au/SubmissionApp
http://cs.anu.edu.au/SubmissionApp

